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Abstra,::t

The possibility of having inflation in a renormalizable cosmological model is

investigated. The Cosmic No Hair Conjectur,_ is proved to hold for all Biancki types

except Bianchi IX. By the use of a conforn_ transformation on the metric we show

that these models aa-e equivalent to the ones described by the Einstein-Hi]bert action

for gravity minimally coupled to a set of sc_lar fields with inflationary potentials.

Henceforth, we prove that inflationary solu1:ions behave as attractors in solution

space, making it a natural event in the evolution of such models.
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Inflation has become one of the most desirable features of any cosmological model.

There are several reasons for this, ranging frol::l particle physics considerations to the

large scale structure of the spacetime around u_. Since most of these issues have been

extensively discussed in the literature we shall just refer the reader to the relevant source

[i].

One amongst many problems solved by inftat!on is that of explaining the isotropy and

large scale homogeneity of the observable part of the Universe (Ho 1 "-_ 102Scm). As a

bonus inflation provides us with a mechanism to i_roduce density perturbations that could

be responsible for the formation of structure in t ae Universe after inflation (see Turner in

[1]).

At the moment there are several models f,,r inflation, the so'called new inflation

proposed by Albrecht and Steinhardt [1], the chaotic inflation proposed by Linde [1] and

the higher derivative gravity models [2], [3]. The first two models are based on a rather

similar theory, namely that of gravity coupled minimally to a real scalar field. Even

though the ideas behind these two theories are rather different, in practice one of the few

differences is the form of the potential on which the scalar field moves (e.g. Coleman-

Weinberg type vs. rn2¢ 2 or A¢4). The important feature of these two models is the

existence of a very small coupling constant (s,:e Turner in [1]). However, the chaotic

scenario seems to be more natural in the sense that the form of the potential needed is

uaore generic and the restrictions imposed on t]:e initial conditions for the fields are less

severe. The third model is substantially differer_t, both in principle and in practice. It is

based on adding extra terms, proportional to ti.e P_iemann tensor square and some of its

contractions, to the standard Einstein-Hilbert _.ction. The appeal of this theory resides

in the fact that it contains inflationary solutioi s without having an inflaton scalar field

[2] - [4]. Inflation is then a consequence of (almost) pure gravitational interactions.



ORIQINAL PAGE IS

OF POOR QUALITY

In the first two theories inflation appears as a generic feature, not only when the

spacetime is the familiar flat or open Robertson-Walker but even when anisotropic case

are considered [8]. These results have been extended to a large class of inhomogeneous

open or flat models (nonpositive three curvature i.e. 3R = P < 0) for the case of new

inflation [9], and for the R 2 model [4-7]. We would like to add that some arguments have

been given in support of the idea that closed models will a/so inflate unless their spatiM

topology is S 3 or S 2 × S 1 (see Barrow in [7]). This would certainly enlarge, and contribute

to the measure of the set of models that undergo inflation [10].

The motivation for any of the above theories is understandable, almost all theories

of the Universe contain at least one scalar field and gravity. The usual argument for

adding higher derivative terms to the gravitational action is the renormalizability of the

theory [11]. The divergences in the gravitational action to first order are proportional to

R 2, R,,_R _ and R,_,,,,R "'_ so it is only natural to add these terms in order to renormalize

the theory. On the other hand we know of the existence of scalar fields in the theory so

it seems only natural to have at least one of these. The renormalizability of the theory

demands an additional interaction term between the graviton and the scalar field of the

form -_¢_R [11]. The lagrangian can then be written as (see Brown and Collins in [11])

£ = £g + Z:_+ £g_ (I.i)

where E 0 and £_ are the gravitational and scalar field lagrangians respectively and £e_

represents the interaction term. These are given by

_9 h + ,_oR+ ao (R2- 4R._R"_ + R,,_ m'_')

Z-boC.,,p_C""_ + coR _ (1.2)

c_ = -½(re) _- v(¢) (1.3)

£:._ = -2_¢_R (1.4)
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where V(_b) is some arbitrary renormalizable potential, and A, n0, _, a0, b0, Co are constants

(satisfying the renormalization group equations 11]). _o 1 is proportional to 16_-G,v, but

for practical purposes we will let the proportiorality factor unspecify. C_,_ is the Weyl

tensor and will vanish for conformally flat metric: (like in the RW case). The quantity mul-

tiplying no is the Gauss-Bonnet density, when iategrated over the invariant four-volume

v/-_g42: it gives a topological invariant, so its w_riation vanishes and as a consequence it

does not contribute to the equations of motion for this reason we shall set a0 = 0 (see

Barth and Christensen in [11]).

The theory described by the above equatiols is very general and it contains many

special cases that have been studied in the past Since all of these are important in their

own right we have compiled two tables of referen_ es containing most of these and indicated

whether these undergo inflation. The cases have been separated into two classes. Table

one represents purely gravitational models, i.e. _:g_ =/:_ = 0, while table two comprises

the cases where a scalar field is present. The staldard case a0 = b0 = Co = _ = 0 has been

omitted from the table while those marked wit_ *** are the ones studied in this paper.

We would llke to comment that setting n0 - 0 does not mean we are setting the

gravitational constant to zero, but rather that _ither at some stage in the early universe

the quadratic terms or tl,e _¢2R terms are tt:e dominant ones in the ,_ction, or that

gravity is induced by a symmetry breaking mec!_anism where ¢ acquires a non zero VEV

determining the effective gravitational constant [12].

The paper will be organize as follows. In S_c. 2. we will review the induced gravity

case and by the use of the cc,._formal transform _tion recast its results and consequences,

we could think of this as the case (n0 = 0). In Sec 3. we shall study a much more general

ca_e. We she!l finalize with _ome commeut_ an_ concht_ior, s
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Induced Gravity Model

This model was first proposed by Zee [12] as an attempt to use symmetry breaking

to generate the Einstein term in the action at low energies. The model is described by a

lagrangian of the form

c =

whereV(_) = _ __,2)_i(_ and 87r_ __ -( is positive. In this model the present gravitational

constant would be given by the VEV of the scalar field, i.e. GN = (E < _ >2)-1. The

existence of inflationary solutions had already been noticed by Acceta et al [121. They

found that exponential and power law inflation occured for _b _ _ and _ ---, 0 respectively

for not very special values of e and A.

We will now show, using the conformal transformation technique, why is it that this

model inflates naturally in the isotropic case and subsequently generalize this result to the

anisotropic models. By conformally transforming the metriG the action can be rewritten

as the Einstein-Hilbert action in minimal coupling with a scalar field (this was first done

for the R + eR 2 model by Whitt [17]). The advantage of this transformation is clear, we

can analyze the behaviour of the scalar field simply by looking at the potential in which

it moves.

Let us consider the following conformal transformation:

_._ _ g_g_ (2.2)

In te_ms of this new metric thz action coraing from (2.i) becomes

1 )2 I/(_b)] (2.3)

v_ + _-
---- ' In ¢_ (2.4)
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2_(_)_. 8_;_-e2AT/4 [1___-- :'_xp(-?_/1 -re6e _;¢) (2.5)

Fig.1 shows the potential lv'(¢) for 7/= 1, e : ¼, _; = 1. It is easy to understand why

the model undergoes exponential inflation for l_rge positive ¢ ( ¢ ---+ oo), the potentiM

is so flat the that model behaves as if dominated by an effective cosmological constant

A
A'J! = s-X;'_c:'producing the usual slow rolling of the _ field. In these regime we can

transform back to the real spacetime where ¢ lives and see that inflation takes place

well. Following the exact same logic we deduce that power law inflation is also possible

when ¢ is a large negative number (¢ _ 0). Th=_ asymptotic form of I/(_) is given by

e for ¢ --, -oc (2.6)~ exp(-4 1+

1
then provided e < _ ( the exponent is smaller than v/2 ) power law inflation will occur.

The condition on e ensures that the potential is not too steep. Power-law inflation in the

fictitious _-world will always guarantee power-la z inflation in the real g-world, we can see

this by setting the scale factor (_ o( i p then a o¢ _' and if i6 > 1 then p = 2£6 - 1 > 1.

Let us now turn to the anisotropic cases. We :ould of course try to prove the generality

of the result by direct calculation, but this coulci be extremely difficult and time consum-

ing. Instead, we shall use a shortcut. In order t,_ go from one representation to the other

we have not specified the form of the metric g_, (or _,,,,) so we can obtain our results in

either world and transform it back. Notice that in the _ world the energy-momentum ten-

sor fur the scalar field subtracting A_f/satisfies t he dominant and weak energy conditions.

Hence, we can apply Wald's cosmic no hair conj,_.cture [8] and conclude that inflation will

always take place (except maybe in Bianclfi 2.X). This result can be further extended

to a class of -nhomogeneous spacetimes with m npositive t_ree curvature. Inflati,m is a

natural event if the universe starts out from a r.,:gion of large positive ¢. If, on the other

hand q_ ---* 0 (9 ---* -oo), we can use a similar result found by Moss and Sahni [8] for the

case of power law inflation (unfortunately this rt suit only applies to the case of a massive

5
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scalar field) to infer the generality of the event.

3 Renormalizable Model

In this section we shall consider a more general case. The model is described by eq.

(1.1) with bo = 0,

1 ½ c'R2 _ -v(¢)c- 2;_=R- _¢2R + _ - (re) _ (3.1)

and the equivalent action

(3.2)

(3.3)

and finally write the leftover as "Einstein's " equations with some scalar fields.

technique can be used for an even more general case [14].

Following the above method, we find

l ln [I - n2_¢ 2 + 2aR]

where a cosmological constant A has been included in V(¢).

As in §.2, we will use a conformal transformation to reduce the system (1.1) to that

of gravity coupled to two scalar fields. Such a system is easy to analyze. We need only

to know the form of the potential to deduce the dynamical behaviour of the scalar fields.

We will outline the method for finding the conformal transformation that will do the

trick. Firstly, write down the basic equations coming from the variation of (1.t), then

perform an arbitrary conformal transformation of the form

_._ = e2"(=")g_,,

where a; is an unknown function to be determined later. Secondly, calculate the second

order derivative of R and w, identify these terms so as to eliminate them from the equations

This



ORi(i'I?,IAL FT:_GE !S

.OF POO_ QU?A.iTY

where the potential in the _-world is

u(¢'¢) - _ - "¢ J + e-V%¢V(¢)

Now we shall analyse the potential _r(¢,¢) i:_ two different cases:

(3.4)

Case A :V(¢) = 0

Let us focus our attention in the case _ > 0. T!_leother case is rather similar so we will

omit it.Itisusefulto definea criticalvalue for the scalarfieldas

then the potential U(¢, _b) has a zero at

¢-¢o= ¢ol

(3.5)

(3.6)

The potential is shown in Figs. 2a and 2b. From this and Eq. (3.4) we find that there

is a very flat plateau in the potential for large _, unless ¢ is much larger than ¢c. The

evolution of such a model might proceed as follo #s. Near the Planck scale the Universe is

probably in an excited state and its energy is la:ger than the plateau. We could imagine

then the universe-particle hovering over the potential. As time goes by it might land on

a region of large ¢. If so then it will effectivel¢ becomes dominated by a cosmological

constant, hence invoking the No Hair Conjecture, we would conclude that, if it is an open

or fiv t Bianchi model (or a sufficiently constrai_lt Bia_chi IX), it will inflate. If _/, > 0

but not to large, then the model will not inflah: (it might even land at the minimum of

the potential, however we belive this is highly ualikely). It then continues on a slow roll

towards the minimum inflating and becoming m _re isotropic and De Sitt_.r-1;ke as it goes

along, ending completely isotropic at the bottom of the potential. The isotropization time

is of order one Hubble expansion time ÷ = 2v_, when translated into :he g-world, the

time scale becomes

r =_ exp(- s .
_i_¢1) T (3.7)



ORIGINAL PAGE IS

OF POOR QUALITY

where _bl is the value of _ when the universe becomes isotropic (see also [8]). Because of

slow rolling during this period, the value of _ changes very slowly hence the definition of

_#1 is not too ambiguous.

One interesting feature in this model must be mentioned : After the inflationary period

has come to an end, the universe evolves towards the zero of the potential (as defined by

(3.6). Moreover, from this eq. we find that the value of the _ field at zero is bounded

by the critical value, i.e. _0 < _=- This is interesting because in the anisotropic case a

universe where gravity is not minimally coupled to a scalar field is bound to encounter

a singularity at _ > _c. This effect was first discussed by Starobinskii [16]. However, if

curvature square terms are taken into account (as in our model), then the universe always

evolves into the region with _ < _c. Hence, even if the universe starts with _ > _, it

does reach its present state.

Case B : V(_) # 0

This case is a little more involved as it depends on the explicit form of V(¢,). 6r(_b,_) is

iA_ . Nevertheless, if the scale of thedepicted in Figs. 3a and 3b for V(_) = -3'"l-2"n_v + 1 4

potential V(_) is much smaller than 6"(_b,%b) (for example: V(_) might be a GUT scale

or below while 6r(_, _) could be at the Planck scale), then we can ana/yse the potentials

separately. When the universe is more or less at the Planck scale, we can neglect the

contribution coming from V(¢,). The dynamical behaviour of the scalar fields are the

same as in Case A, i.e inflation is dr_vcn by the R _ term. However, after inflation, when

the universe evolves into the potential "zero" line, the contributior, from V(¢,) becomes

important.

Hereafter we shall discuss the evolution of the universe after such a stage. A relation

similar to (3.6) can be found between @ and _, and using it we can rewrite the action and
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the potentialU(¢, ¢) as

(.] (3.8)

= 1 v(¢) (3.9)
-

where ¢c --= [_2_( 1 - 6_)] -1 as in [13]. This theory is the same as one with non-mirLimal

coupling to gravity and has already been investigated in [13]. There it was found that

inflation only occurs if ( < 0. In particular, if ( is negative and V(¢) contains a ¢4 term,

then the model has two inflationary periods, pro_ iding a realization of the double inflation

proposed by Turner and Silk [15] (see also [6]). We would like to point out that generally

one of the difficulties of Planck scale inflation is that a closed universe may collapse more

or less in a Planck time before reaching the GUT stage, however the Planck scale potential

is troublesome because it produces too large denfity perturbations. If, on the other hand,

we find double inflation (one at Planck scale, the other at GUT scale), we can solve this

problem. The first inflation will prevents the universe from collapsing, while the second

one would guarantees the present universe isotr_py and homogeneity on the large scale,

while providing the appropriate density perturbations.

As a special case of this model we will inves:igate the induced gravity model with art

R 2 term (no linear term in R). Here the confonnal factor is given by

w = _ In [_2e¢2 + 2aR] (3.10)

_nd the potentialin the _-woEd is

=

where Y(¢) = _(_ ¢ _ - 7/2)2 . Again for a similar choice of parametcrs we show (_'(¢,¢)

in Fig. 4. We find that double inflation is also present for exactly the same reasons as

mentioned earlier. The first inflation occurs due to the curvature squared term. At the

end of this period the potential V(¢) becomes important and since its shape is the same
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as that shown in Fig.l, we find a second inflation, this could be exponential or power law

depending on exactly where it lands.

4 Concluding Remarks

In this paper, we have considered a renormalJzable theory, which consists of curvature

square and non-minimally coupled terms. We have shown that by using conformal trans-

formations on the metric these theories can be converted into the normal gravitational

theory in minimal coupling with a set of scalar fields. These theories are much simpler

to analyze by using elementary techniques about the motion of point particles in a given

potential than the original theory. The general conclusion is that anisotropic model (and

isotropic ones) undergo inflation in these theories without having to fine tune parame-

ters. The general feature is the fact these scalar fields have potentials (in the transformed

world) that are extremely flat for large positive values of the fields giving rise to exponen-

tim inflation or have the right curvature to produce power law inflation for large negative

values of the fields.

The conclusion was reached not by solving the evolution equations for these fields but

rather by showing that the energy moraer,_um tensor of these theories satisfies the strong

and dominant energy copditions and then invoking the No Hair Conjecture.

Wc would like to finish with a few remarks:

(i) Although the analysis in the fictitious _-world is easier tr, an in the original g-world,

we always have to return to the original system in ordcr to know what is l_appenir, g to:

our model.

(ii) The use of conformal transformations is inconsequential because the analysis is

basically of a classical nature. However, if we were interested in quantum (or semiclas-

10
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sical) process, like calculating density perturb_:fion in these models, the two classically

equivaler.t systems might not (and probably arc: not] equivalent any longer.

(iii) We have not consider Weyl curvature sq'tare terms because in that case our simple

transformation breaks down (remember that the Weyl tensor is conformally invariant) and

so it is impossible to get rid of this term in the action.
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Figure caption

Fig.1 The potential V(_) = Vo [1-exp(-2_n_)] 2 with Vo- - s.,,,_ • The special

choice T/= 1, e = ¼, t¢ = 1 has been made.

Fig. 2a View from above of the potential (3.4) for the case V(_) = 0 and _ = 0.01. Both

the flat plateau and the minimum are dearly seen.

Fig. 2b View from below. Here the minimum of the potential is clearly shown.

1 Try2 (_)2 1 4Fig. 3a View from above of the potential (3.4) when V(_) = -_ + iA_b . in this

particular case we took _ = 0.005, m s = 10, A = 0.1 in order to highlight some of

the features.

Fig. 3b View from below

Fig. 4 The potential 3.11with _ = 0.1, 772 = 33.33, _ = 0.6 in order to highlight some of

the features.

12
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